
Malware Reverse Engineering Report Practical 4

By: Gary Jones

Jonegn1@ufl.edu

CAP4136 Practical 4: Reverse Malware Engineering

mailto:Jonegn1@ufl.edu

Sample 1 of 3: Sample4a.pdf
Using peepdf sample4a.pdf was found to have been updated 4 times as indicated by the version

number being 1.4. Additionally, there are 15 objects, the languages used for this sample include

javascript and js as shown in figures 1 and 2. In addition to this the hashes of the malware is

provided and is searchable on virus total and other resources.

Figure 1: sample4a.pdf metadata with peepdf

Figure 2: sample4a.pdf metadata with pdfid.py

As we can see in figure 3 the entropy is above 7 which indicates that there might be obfuscation

taking place. In addition to this we can look at figure 4 and see strings indicating when file was

created and when it was last modified.

Figure 3: sample4a.pdf metadata with pestudio

Figure 4: sample4a.pdf metadata with pestudio part 2

Utilizing regshot it is observed in figures 5 that there are 16 files added through the internet

browser and there are 9 files deleted as well dealing with the applications history.

Figure 5: sample4a.pdf files added and deleted

Despite utilizing microsoft edge I did not notice any network activity. Using Intezer Analyze this

was confirmed as this sandbox did not indicate any network activity either as shown in figure 6.

Lastly, ask we can see in figure 7 the js code from the pdf.

Figure 6: Network Activity From Intezer Analyze

Figure 7: js code

See below for the YARA Rule for Sample 1 of 3

rule creds_ru

{

meta:

strings:

description = “simple YARA rule”

$a =

“/ID[<CA16DB0E50F60C66FCDBDA9D468C7D94><CA16DB0E50F60C66FCDBDA9D468C7D94>]”

condition:

($a)

}

Sample 2 of 3: sample4b.pdf
Methods

Using peepdf sample4b.pdf was found to have been updated 3 times as indicated by the version

number being 1.3. Additionally, there are 14 objects, the languages used for this sample include

javascript and js as shown in Figure 8 and Figure 9. In addition to this the hashes of the malware

is provided and is searchable on virus total and other resources.

Figure 8: sample4b.pdf metadata with peepdf

Figure 9: sample4b.pdf metadata with pdfid.py

As we can see in Figure 10 the entropy is above 7 which indicates that there might be

obfuscation taking place. In addition to this we can look at Figure 11 and see strings indicating

when file was created and when it was last modified.

Figure 10: sample4b.pdf metadata with pestudio

Figure 11: sample4b.pdf metadata with pestudio part 2

Utilizing regshot it is observed in Figure 12 and Figure 13 that there are 16 files added through

the internet browser and there are 23 files deleted as well dealing with the applications history.

Figure 12: sample4b.pdf files added

Figure 13: sample4b.pdf files deleted

Despite utilizing microsoft edge I did not notice any network activity. Using Intezer Analyze this

was confirmed as this sandbox did not indicate any network activity either as shown in Figure

14. Lastly as we can see in Figure 15, the js code present within this pdf.

Figure 14: Network Activity From Intezer Analyze

Figure 15: js code

See below for the YARA Rule for Sample 2 of 3

rule creds_ru

{

meta:

strings:

description = “simple YARA rule”

$a = “<</OpenAction<</JS(this.Z0pEA5PLzPyyw\(\))”

condition:

($a)

}

Sample 3 of 3: sample4c.doc
Using oledump.py I was able to determine the that the date of creation for this document was

08DEC2014 and it was last modified that same date as shown in Figure 16. With the use of

oledump.py we can also see that this program is written with VBA and has active Macros

working in it as shown in Figure 17. After running oledump.py -s 7 -v sample4c.doc and running

a search for shell we can also see the initialization of a shell command as shown in Figure 18. In

addition to this http was searched and was identified with a createobject alongside a “Get”

request as shown in Figure 19. This information indicates that the code is likely reaching out to

websites and looking at the code associated with it encryption appears to be utilized here. To

bypass this quickly vmonkey was used as shown in Figure 20 through Figure 22. From the

results shown here we can see that the malware is reaching out to http://fachonet.com/js/bin.exe

and creating files called YEWZMJFAHIB.exe. Finally, as we can see in Figure 23 through

Figure 25 47 files were created and 28 were deleted.

Figure 16: oledump.py of sample4c.doc Metadata

http://fachonet.com/js/bin.exe

Figure 17: oledump.py sample4c.doc header information

Figure 18: sample4c.doc shell command

Figure 19: VBA Get Request

Figure 20: vmonkey part 1

Figure 21: vmonkey part 2

Figure 22: vmonkey part 3

Figure 23: files added part 1

Figure 24: files added part 2

Figure 25: files deleted

See below for the YARA Rule for Sample 3 of 3

rule creds_ru

{

meta:

strings:

description = “simple YARA rule”

$a = “0356414e0b”

condition:

($a)

}

